Effect of Stress and Radiation of Mobile Phones on Heart and its Capabilities

Ali Hussein F. Al-Nasraui*
*College of Biotechnology, Department of Biotechnology, AlQasim Green University.
*Corresponding author E-mail: ali.hussein@biotech.uoqasim.edu.iq

KEY WORDS:
- Technological development
- Smartphone revolution
- Electromagnetic field
- Stress
- Heart rate variability

ABSTRACT

The furious rate of technological change and growth in mobile products has made it very popular for users to get occupied in these devices. Smartphone revolution has made the users to use cellular phones more frequently which often results in stress factors causing severe impact over brain cells and heart functions. This article deals with the stress affecting heart.

The research was conducted on a group of students under normal and vibration modes of mobile phones. Different types of phone modes and the stress generated by them which affects the heart are analysed. It is noted that human heart is sensitive to stress generated by Electromagnetic Fields (EMF) emitted from cellular phones in normal mode rather any other modes resulting in drastic changes of heart rate. Strong artificial EMFs can enter the body and interfere with the natural way the body works. This can affect virtually any system within the body from stress levels to DNA. The investigations are done by an electrocardiogram unit which depicts the Heart Rate Variability (HRV) i.e., the fluctuations in the heart rate from the average heart rate. HRV is regulated by the autonomous nervous system which decreases as the heart rate increases. The variation in heart rate is determined by means of ECG which records the electrical activity of the heart. Based on the results, significant analysis of stress recovery factors is performed.

http://dx.doi.org/10.31257/2018/JKP/100203

تأثير الإجهاد والإشعاع للهواتف المحمولة على القلب وقدراته

علي حسين فرج النصراوي

كلية التقانات الأحيائية – قسم التقانات الأحيائية – جامعة القاسم الخضراء

الخلاصة

معدل تأثير التغيرات التقنية والنمو في نتائج الهاتف النقال يكون جداً مبسط من الانهماك في استعمال الأجهزة. ثورة الهاتف المحمول المنظور باستخدام الهواتف الحالية أكثر ترددًا، هذه المقالة تزودنا بالإرشاد على القلب. البحث يشير وجمعية من الدارسين بالحالة الطبيعية للمستخدمين لاحتراف الهواتف القابلة استعملت فيها أنواع من الهواتف تؤثر الأجهادات بالتأثيرها على القلب وتحوّل أن قلب الإنسان ذو حساسية إ jegادية بواسطة الحقول المغناطيسية الكهربائية تتبع من الهواتف الحالية بالطرق المتناسبة، مما يثيرsnippet في المعالجات. الحكفاء ترسم الأخطأ في DNA القلبي ويمكن التداخل مع كافة النسج الدم والنسيج الحساسية إ jegادية بواسطة الحقول المغناطيسية الكهربائية يتبع من الهواتف الحالية بالطرق المتناسبة والتحديات ترسم الأخطأ في DNA القلبي ويمكن التداخل مع كافة النسج الدم الشريان والشريان والشريان العصبي الودي الذي ينقص ويزيد معدل القلب. معدل النبض القلبي يعني ECG بالفعالية الكهربائية للقلب الأساس في النتائج. التحليل المعنى لاستخدام عوامل الضغط.
1. Introduction

Electrode is a conductive pad in contact with the body that makes an electrical circuit with the electrocardiograph. On a standard 12-lead ECG there are 10 electrodes.

Leads are divided into three sets namely, limb, augmented limb and precordial leads. The 12-lead ECG has three limb leads, three augmented limb leads and six precordial leads. Limb and precordial leads are bipolar and unipolar respectively. Stress is the response to the demands of everyday life. This can be useful to certain extents[1]. For example in completing ones task on a regular basis so that it keeps a person active. But when the stress level reaches an extreme condition, the situation may result in total disorder[2]. It can affect heart and its functions resulting in high blood pressure, cerebrovascular accident (stroke), lowered immunity response, weight loss, depression and malfunctioning of internal organs.[3] The body responds to stress and anxiety in the same way as it responds to fear and excitement. Stress is caused by work pressure, lack of confidence, unrealistic expectations, chronic illness, longer hours of work, etc. Overuse of mobile phones also results in stress which is one of the main reasons in the present environment[4]. The heart rate, which is the speed of the heart beat measured by the number of contractions of the heart, is varied according to the body’s physical needs, including the need to absorb oxygen and excrete carbon dioxide[5]. It is usually equal or close to the pulse measured at any peripheral point. Activities that can provoke changes include physical exercise, sleep, anxiety, stress, illness and ingestion of drugs, where stress is the leading factor affecting the functioning of the heart directly[6]. EMFs either pass through the heart without interaction or they interact directly[7]. Static and time-varying fields interact with the body differently. Extremely low frequency (ELF) EMFs easily penetrate tissues and cause virtually non-sensory reactions. The reaction of the cardiovascular system to ELF EMFs is complex and includes direct responses of cardiac muscles[8]. High frequency and high strength EMFs undoubtedly affect the cardiovascular system[9]. It is important to evaluate whether the extensive use of mobile phones in various types of jobs could exert influence on heart[10]. The cellular stress response is a reaction to potentially harmful stimuli in the environment[11]. EMF stimulates protein synthesis and affects the two strands of DNA[12]. Since EMF can interact with DNA, it can cause errors during replication[13]. During protein synthesis higher energy EMF causes DNA strand breaks, which keeps the cells in stressed condition[14]. This condition of stress due to the exposure of electromagnetic and infra-red effects of cellular phones affecting heart and its working is analysed and explained[15].

2. Literature Survey

Electroencephalogram (EEG) recording changes due to the exposure of GSM phone teenagers[1]. Cellular phones may reversibly influence the human brain and produces serious effect on the cognitive functions in children. Electromagnetic radiation has been increased due to the increase in use of communication devices which affects reproductive functions and membrane oxidative mechanism in human beings[2]. The oxidative stress from exposure to Wi-Fi and mobile phone induced EMR affects the functioning of heart. Owing to excessive usage of smart phones, this study has outlined several health related issues like increasing stress
among the users, sleeplessness, cervical problems, memory loss, hearing inability thus leading to abnormal heart functions[3]. Certain portion of the heart muscle gets thicker leading to functional impairment because of the cardiac muscle which in turn causing sudden cardiac death[4]. This condition occurred as a result of stress involving different signalling pathways in the cardiac system. The death of heart muscle occurs due to unusual enlargement of tissues or cells and restriction of blood supply to certain parts of muscle as a result of cellular waves or oxidative stress. Any damage to cells is constantly repaired[5]. However under severe levels of stress it may lead to death of almost all the cells in the organ. The harm reasons lack of energy switch within cells depletion, preventing controlled demise and inflicting the mobile to crumble. Electromagnetic fields emitted by mobile phone base stations affect the well being of humans[6]. In certain conditions, it may not have serious impact on heart functions directly but it may result in adverse effects. The health effects on the exposure to mobile phone base station radiation is reviewed and evaluated by conducting systematic review of randomized human trials in the laboratory[7]. Based on the experiments, it is concluded that though there are no acute disorders resulting due to the exposure of mobile phone radiation, mild defects occurred in children and adolescents. Evidence for the absence of long-term effects is limited. Exposure to high levels of electromagnetic radiation leads to cardiovascular diseases[8]. This systematic review evaluates the changes in Heart Rate Variability (HRV) due to stress from various sources. Hence parasympathetic nervous system activity should be focused to protect cardiovascular health on stress related issues. The use of very low and ultralow frequency HRV components in autonomic research is proposed. Significant increase in arterial blood pressure correlates with the exposure level. Certain illness arises spontaneously for which the cause is unknown but believed to be EMF[9]. It is suggested that EMF is not the main cause for such illness. Further revised study stated that overdose of stress due to mobile exposure causes disturbance to the working of the heart by varying the pressure levels of the arterial valves. The emission of low level radiofrequency electromagnetic fields leading to the absorption of radiation by the brain in users of handheld mobile phones has raised concerns regarding potential effects on health[10]. A systematic review of studies of controlled exposure to radiofrequency radiation with health-related outcomes (electroencephalogram, cognitive or cardiovascular function, hormone levels, symptoms and subjective well-being) is conducted. Health-related outcomes include electroencephalogram (EEG) recordings, assessments of cognitive or cardiovascular function, hormone levels and subjective well-being and symptoms. The perception of electromagnetic radiation and Infra-Red (IR) reports shows the health facts[11]. These consequences cannot be detected accurately unless a series of research is performed. When individuals with self-reported electromagnetic hypersensitivity are exposed to EMF, their well-being is affected as a result of long term use of those devices. There are established basic mechanisms through which static and time-varying electric and magnetic fields interact directly with living matter. Induced time-varying fields can stimulate excitable cells such as cardiac muscles. Changes in heart rate variability during a call using mobile phone are a result of electromagnetic field[12]. The electromagnetic energy produced by cellular telephones may
reach very high values of power density during logging into the telephone network or at the starting stage in order to eliminate extreme conditions. This possibility should be taken into account while HRV analysis is performed without simultaneous acquisition and analysis of respiration. The experimental results showed a significant effect of telephoning while driving as opposed to normal driving[13]. The subjects who operated the hands free telephone showed better control over the test vehicle than the subjects who operated the handheld telephone, as measured by the steering wheel movements. A clear improvement over time was found for some of the measurements as a consequence of the results, which clearly depicts the ill-facts regarding the stress developed while driving, owing to the use of mobile phones. Based on stress associated with electromagnetic field exposure, several heart related symptoms and other problems are reported. These symptoms may be related to specific EMF sources or to electrical equipment in perceived electromagnetic hypersensitivity[14]. Research and clinical observations suggest a difference between mobile phone related symptoms with respect to symptom prevalence, psychological factors and health prognosis. This study assessed prevalence of EMF-related and EMF-nonrelated symptoms like anxiety, depression, somatization, exhaustion and stress in people using mobile phones. While conducting studies with EMF, the participants in the research experienced severe headache and had other symptoms of cardiac disorder[15]. They also specified the maximum degree of symptoms during exposure. The degree of headache and other symptoms are indicated on a two 100-mm Visual Analogue Scales (VAS). Electromagnetic fields from mobile phones induce alterations in the brain's blood flow. Electroencephalographic wave pattern during rest (awake and sleep) state are excited to transcranial magnetic stimulation.

3. Cardiac Conduction System and its Correlation With ECG

The heart is able to create its own rhythm and it conducts signals necessary to maintain and coordinate the rhythm [1].

The conduction system shown in figure 1, starts with the Sino-Atrial (SA) node which is responsible for setting the pace of the heart as a whole and directs the atria to contract [2]. The signal from the SA node is collected by the Atrio-Ventricular (AV) node and transmits it through the Atrio-Ventricular (AV) bundle[3]. Branches from the left and right bundle are known as Purkinje fibres that carry the signal to the walls of the ventricles, stimulating the cardiac muscle cells to contract thereby pump blood out of the heart[4].

Electrocardiography (ECG) is the process of recording the electrical activity of the heart using electrodes placed on the skin[5]. These electrodes detect any electrical changes on the skin from the heart muscle depolarizing during each heartbeat[6]. When the electrical impulse passes through the heart, electrical current is created that spread through the body and
reaches the surface of the skin[7]. These impulses cannot be realised but can be picked up and graphed as an electrocardiogram, which is simply a recording of the flow of the electrical current through the heart[8]. This is a common test used to detect problems in the heart[9]. The overall magnitude and direction of the electrical depolarization is captured at each moment throughout the cardiac cycle.

![Normal ECG pattern](image)

Figure 2: Normal ECG pattern.

The SA node sends the depolarization wave to the AV node causing contraction in both ventricles represented by the QRS wave[15]. The ventricles are re-polarized and relaxed denoted by the T wave. U wave is often ignored (figure 2).

3.1. ECG

The block diagram of ECG device is given in figure B1. The potentials picked up through the affected person electrodes are taken to the lead selector transfer. The electrodes are decided on in keeping with the lead application. The signal is then given to the preamplifier which prepares the electronic signal for further amplification or processing. It is usually a 3 or 4 stage differential amplifier. The amplified output is fed to the power amplifier. The output of the power amplifier is supplied to the pen motor which deflects the writing arm of the paper. Frequency selective network is an R-C network, which provides necessary damping of the pen. The auxiliary circuits provide 1 mV calibration signal and automatic blocking of the amplifier during the changes in the position of the lead switch. It also includes a speed control circuit for the chart driver motor.

![Block diagram of ECG](image)

Figure (B1): Block diagram of ECG machine.
4. Material and Method

Electrode is a conductive pad in contact with the body that makes an electrical circuit with the electrocardiograph. On a standard 12-lead ECG there are 10 electrodes.

Leads are divided into three sets namely, limb, augmented limb and precordial leads. The 12-lead ECG has three limb leads, three augmented limb leads and six precordial leads. Limb and precordial leads are bipolar and unipolar respectively.

The experiment was conducted to finding the effect of different modes of phone on heart rate using ECG in a group of five Indian students from the male and different age. ECG machine named Cardiart 108T Digi and jelly based Silver-Silver Chloride specialized exclusively for ECG were used electrodes for both hands and legs and one electrode for chest.i.e. suction cup electrode.

CARDIART 108T-DIGI comes with real time high fidelity thermal array recording. This Single Channel ECG Recorder has sharp and clear trace with electronic lead selection and easy operation.

The ECG works by detecting and amplifying the tiny electrical changes on the skin that are caused when the heart muscle depolarises during each heartbeat. At rest, each heart muscle cell has a charge across its outer wall or cell membrane. Reducing this charge towards zero is called depolarization, which activates the mechanisms in the cell that causes it to contract. During each heartbeat a healthy heart will have an orderly progression of a wave of depolarization that is triggered by

the cells in the SA node, spreads out through the atrium, passes through intrinsic conduction pathways and then spreads all over the ventricles. This is detected as rise and fall in the voltage between two electrodes placed on either side of the heart which is displayed as a wavy line either on a screen or on a paper. This display indicates the overall rhythm of the heart and weaknesses in different parts of the heart muscle. In case if the heart is affected and stressed due to electromagnetic waves, the ECG readings would not be normal and further proceedings are analysed.

4.1. ECG Procedure

Prior to ECG recording, it is necessary to ensure if the body is in normal condition and hence blood pressure is checked. The required pulses are recorded over both hands and legs. ECGs recorded while placing the limb electrodes on the hands and legs, while one suction cup electrode is placed on chest near the SA node of the heart and thereby the waveforms are analysed by applying ECG jelly which is a water soluble saline based gel that promotes electrical conductivity.

5. Results Analysis

Table 1: Normal mode – Indian students.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Sex</th>
<th>Age</th>
<th>bpm</th>
<th>bpm avg</th>
<th>bpm-bpm avg (x)</th>
<th>x^2</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Male</td>
<td>21</td>
<td>64.85</td>
<td></td>
<td>-4.41</td>
<td>19.44</td>
<td>2.20</td>
</tr>
<tr>
<td>P2</td>
<td>Male</td>
<td>20</td>
<td>67.78</td>
<td></td>
<td>-1.48</td>
<td>2.19</td>
<td>0.73</td>
</tr>
<tr>
<td>P3</td>
<td>Male</td>
<td>21</td>
<td>64.60</td>
<td>69.26</td>
<td>-4.66</td>
<td>21.71</td>
<td>2.32</td>
</tr>
<tr>
<td>P4</td>
<td>Male</td>
<td>22</td>
<td>76.29</td>
<td></td>
<td>7.03</td>
<td>49.42</td>
<td>3.51</td>
</tr>
<tr>
<td>P5</td>
<td>Male</td>
<td>33</td>
<td>72.8</td>
<td></td>
<td>3.54</td>
<td>12.53</td>
<td>1.76</td>
</tr>
</tbody>
</table>

The vibration + ring mode recordings of Indian students are shown in table 2.

Table 2: Vibration + ring mode.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>bpm</th>
<th>bpm avg</th>
<th>bpm-bpm avg (x)</th>
<th>x^2</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>70</td>
<td>71.13</td>
<td>-1.13</td>
<td>1.27</td>
<td>0.56</td>
</tr>
</tbody>
</table>
6. Conclusions and Future Enhancement

From the above results, it is understood that heart rate varies between the readings of normal and vibration + ring modes. Overdose in penetration of electromagnetic waves from cellular phones into the human body can be reduced by avoiding frequent use of such devices. Filtering techniques can be introduced so that nuclear waves can be prevented from entering the human body. Devices with lower SAR (specific absorption rate) are advisable.

Some of the precautions to reduce the levels of radiation absorbed from using mobile phones are stated below. The phone should be kept 20cm away from the head and it reduces the radiation doses by about 98%. Use of hands free headsets dramatically reduces radiation emissions into the brain. Frequent use of phones and using phones for longer duration continuously must be avoided. There are a few devices that can be fit to the phone to reduce the radiation emission or allow the body to neutralise the effects. Such devices can be used, so that the nuclear waves entering the body get minimised.

References

APPENDIX A

Table A1. Heart rate analysis of Avenash in normal condition

<table>
<thead>
<tr>
<th>lead</th>
<th>P wave mV</th>
<th>PR interval sec</th>
<th>QT interval sec</th>
<th>ST interval sec</th>
<th>QRS complex sec</th>
<th>RR interval sec</th>
<th>Heart rate bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.075</td>
<td>0.12</td>
<td>0.28</td>
<td>0.18</td>
<td>0.04</td>
<td>24</td>
<td>64.85</td>
</tr>
<tr>
<td>II</td>
<td>0.05</td>
<td>0.12</td>
<td>0.28</td>
<td>0.18</td>
<td>0.04</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.05</td>
<td>0.08</td>
<td>0.28</td>
<td>0.18</td>
<td>0.04</td>
<td>21.9</td>
<td></td>
</tr>
</tbody>
</table>

Table A2. Heart rate analysis of Avenash in vibration+ ring condition

<table>
<thead>
<tr>
<th>lead</th>
<th>P wave mV</th>
<th>PR interval sec</th>
<th>QT interval sec</th>
<th>ST interval sec</th>
<th>QRS complex sec</th>
<th>RR interval sec</th>
<th>Heart rate bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.05</td>
<td>0.08</td>
<td>0.3</td>
<td>0.18</td>
<td>0.04</td>
<td>22</td>
<td>70</td>
</tr>
<tr>
<td>II</td>
<td>0.075</td>
<td>0.08</td>
<td>0.3</td>
<td>0.18</td>
<td>0.04</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.05</td>
<td>0.08</td>
<td>0.3</td>
<td>0.18</td>
<td>0.04</td>
<td>20.5</td>
<td></td>
</tr>
</tbody>
</table>

Table A3. Heart rate analysis of Sachen in normal condition

<table>
<thead>
<tr>
<th>lead</th>
<th>P wave mV</th>
<th>PR interval sec</th>
<th>QT interval sec</th>
<th>ST interval sec</th>
<th>QRS complex sec</th>
<th>RR interval sec</th>
<th>Heart rate bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.125</td>
<td>0.12</td>
<td>0.26</td>
<td>0.18</td>
<td>0.04</td>
<td>22.9</td>
<td>67.78</td>
</tr>
<tr>
<td>II</td>
<td>0.15</td>
<td>0.12</td>
<td>0.26</td>
<td>0.2</td>
<td>0.04</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.1</td>
<td>0.12</td>
<td>0.26</td>
<td>0.2</td>
<td>0.04</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

Table A4. Heart rate analysis of Sachen in vibration+ ring condition

<table>
<thead>
<tr>
<th>lead</th>
<th>P wave mV</th>
<th>PR interval sec</th>
<th>QT interval sec</th>
<th>ST interval sec</th>
<th>QRS complex sec</th>
<th>RR interval sec</th>
<th>Heart rate bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.1</td>
<td>0.18</td>
<td>0.24</td>
<td>0.18</td>
<td>0.04</td>
<td>20.09</td>
<td>74</td>
</tr>
<tr>
<td>II</td>
<td>0.1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.18</td>
<td>0.04</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.18</td>
<td>0.04</td>
<td>21.7</td>
<td></td>
</tr>
</tbody>
</table>

Table A5. Heart rate analysis of Amit in normal condition

<table>
<thead>
<tr>
<th>lead</th>
<th>P wave mV</th>
<th>PR interval sec</th>
<th>QT interval sec</th>
<th>ST interval sec</th>
<th>QRS complex sec</th>
<th>RR interval sec</th>
<th>Heart rate bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.075</td>
<td>0.12</td>
<td>0.3</td>
<td>0.2</td>
<td>0.04</td>
<td>24.5</td>
<td>64.6</td>
</tr>
<tr>
<td>II</td>
<td>0.075</td>
<td>0.12</td>
<td>0.28</td>
<td>0.2</td>
<td>0.04</td>
<td>22.02</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.05</td>
<td>0.12</td>
<td>0.26</td>
<td>0.16</td>
<td>0.04</td>
<td>23.36</td>
<td></td>
</tr>
</tbody>
</table>
Table A6. The heart rate analysis of Amit in vibration+ ring condition

<table>
<thead>
<tr>
<th>lead</th>
<th>P wave mV</th>
<th>PR interval sec</th>
<th>QT interval sec</th>
<th>ST interval sec</th>
<th>QRS complex sec</th>
<th>RR interval sec</th>
<th>Heart rate bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.075</td>
<td>0.12</td>
<td>0.3</td>
<td>0.24</td>
<td>0.04</td>
<td>23.8</td>
<td>63.33</td>
</tr>
<tr>
<td>II</td>
<td>0.075</td>
<td>0.12</td>
<td>0.28</td>
<td>0.24</td>
<td>0.04</td>
<td>23.8</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.05</td>
<td>0.12</td>
<td>0.28</td>
<td>0.24</td>
<td>0.04</td>
<td>23.5</td>
<td></td>
</tr>
</tbody>
</table>

Table A7. Heart rate analysis of Blal in normal condition

<table>
<thead>
<tr>
<th>lead</th>
<th>P wave mV</th>
<th>PR interval sec</th>
<th>QT interval sec</th>
<th>ST interval sec</th>
<th>QRS complex sec</th>
<th>RR interval sec</th>
<th>Heart rate bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.075</td>
<td>0.12</td>
<td>0.3</td>
<td>0.22</td>
<td>0.04</td>
<td>20</td>
<td>76.29</td>
</tr>
<tr>
<td>II</td>
<td>0.075</td>
<td>0.12</td>
<td>0.3</td>
<td>0.22</td>
<td>0.04</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.075</td>
<td>0.12</td>
<td>0.3</td>
<td>0.22</td>
<td>0.04</td>
<td>19.5</td>
<td></td>
</tr>
</tbody>
</table>

Table A8. Heart rate analysis of Blal in vibration+ ring condition

<table>
<thead>
<tr>
<th>lead</th>
<th>P wave mV</th>
<th>PR interval sec</th>
<th>QT interval sec</th>
<th>ST interval sec</th>
<th>QRS complex sec</th>
<th>RR interval sec</th>
<th>Heart rate bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.05</td>
<td>0.1</td>
<td>0.26</td>
<td>0.2</td>
<td>0.04</td>
<td>19</td>
<td>82</td>
</tr>
<tr>
<td>II</td>
<td>0.075</td>
<td>0.1</td>
<td>0.26</td>
<td>0.2</td>
<td>0.04</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.075</td>
<td>0.1</td>
<td>0.26</td>
<td>0.2</td>
<td>0.04</td>
<td>17.5</td>
<td></td>
</tr>
</tbody>
</table>

Table A9. Heart rate analysis of Sachin in normal condition

<table>
<thead>
<tr>
<th>lead</th>
<th>P wave mV</th>
<th>PR interval sec</th>
<th>QT interval sec</th>
<th>ST interval sec</th>
<th>QRS complex sec</th>
<th>RR interval sec</th>
<th>Heart rate bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.075</td>
<td>0.12</td>
<td>0.3</td>
<td>0.24</td>
<td>0.04</td>
<td>22</td>
<td>72.8</td>
</tr>
<tr>
<td>II</td>
<td>0.125</td>
<td>0.12</td>
<td>0.3</td>
<td>0.24</td>
<td>0.04</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.075</td>
<td>0.12</td>
<td>0.3</td>
<td>0.24</td>
<td>0.04</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Table A10. Heart rate analysis of Sachin in vibration+ ring condition

<table>
<thead>
<tr>
<th>lead</th>
<th>P wave mV</th>
<th>PR interval sec</th>
<th>QT interval sec</th>
<th>ST interval sec</th>
<th>QRS complex sec</th>
<th>RR interval sec</th>
<th>Heart rate bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.1</td>
<td>0.08</td>
<td>0.3</td>
<td>0.24</td>
<td>0.04</td>
<td>23</td>
<td>66.37</td>
</tr>
<tr>
<td>II</td>
<td>0.1</td>
<td>0.08</td>
<td>0.28</td>
<td>0.24</td>
<td>0.04</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.1</td>
<td>0.08</td>
<td>0.28</td>
<td>0.26</td>
<td>0.04</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>